Development of Casual 2-D Game Laboratory Exercises in Introductory
Computer Graphics Programming Course

Ge Jin
Purdue University, Calumet
ge.jin@purduecal.edu

Magesh Chandramouli
Purdue University, Calumet
mchandr@purduecal.edu

Abstract

Introductory programming is an important foundational course in computer science,
information technology, computer graphics technology, and other computing-related
disciplines. However, it is a challenging task for an instructor to raise and maintain student
interest in programming at the freshman level programming course. This difficulty has resulted
in high dropout rates in computing-related majors in higher education worldwide. In this paper,
a series of hands on laboratory exercises are described, focusing on casual 2-D games to
increase the students’ interest in an introductory computer graphics programming course. The
Pong game laboratory exercise was developed to teach the conditional statements and
keyboard/ mouse interaction. The Tetris game laboratory exercise was designed to reinforce the
usage of array data structure and boundary checking. The Maze game laboratory exercise was
developed to convey the knowledge of recursive programming. In addition, the Angry Bird
game laboratory exercise was designed to teach programming using open source libraries.
Students have shown great interest in these casual game laboratory exercises and provided
positive feedback in the end-of-semester course evaluations.

Introduction

Teaching a foundational programming course is a challenging task. The difficulty of passing
a programming course at the freshman level has resulted in high dropout rates in computer
science, information technology, computer graphics technology, and other computing-related
majors in higher education worldwide [1]. Computing educators have stated that learning
programming languages and acquiring problem-solving skills are time-consuming and
difficult tasks [2, 3]. One important reason is that the current programming languages are
mainly designed for industrial use and hence are too complicated to teach programming
foundations. Jenkins [4] indicated that the programming language for an introductory course
should be chosen for an educational purpose rather than popularity in industry.

Several key components influencing student motivation must be considered when discussing
programming instruction and learning. Driscoll [5] stated that instructional material must
appeal to learners and must motivate learners in their goal achievement. Keller and Litchfield

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

claimed that considering student motivation “is particularly important because it pertains to a
person’s basic decisions as to whether or not to accept responsibility for a task and to pursue
a given goal” [6]. As applied to instruction, Talton and Fitzpatrick noted, “A long-standing
difficulty in the development of introductory courses in computer graphics is balancing the
educational necessity of ensuring mastery of fundamental graphics concepts with the highly
desirable goal of exciting and inspiring students to further study by enabling them to produce
visually interesting programming projects” [7].

Many researchers in education have shown that the use of instructional methods other than
the traditional lecture format is much more effective in facilitating student learning. Methods
such as active learning [8], problem solving [9, 10], and project-based learning [11, 12] are
encouraged as ways of exciting students, providing real-world, problem-solving experiences,
and increasing transfer of critical skill sets from the classroom to the workplace, especially in
introductory programming instruction [13] and other technology-based learning [14, 15]. To
allow students to relate new learning to existing skills/knowledge without cognitive overload,
teaching in technology environments should include as much contextual content as possible.

A freshman programming course is an important foundational course in computer science
and graphics education. Educators in these disciplines have proposed various ways to
enhance the learning of programming concepts in introductory programming courses.
Recently, Hernandez et al. taught fundamental programming principles to freshmen students
through a 2-D Game Engine: GameMaker [16]. Game Engine allows the students to
understand fundamental programming principles without having to learn the complex syntax
of programming language. Similarly, Kazimoglu et al. felt that digital game play could be an
effective method for computational thinking programming instruction [17]. Additionally,
Papastergiou showed that a digital gaming method of learning was both more motivational
and more successful than traditional non-gaming methods in teaching computer memory
basics to high school students [18]. However, Holzinger et al. cautioned that although
dynamic media can be an effective learning tool, excessive use of such methods could lead to
cognitive overload if not utilized judiciously [19].

The Computer Graphics Technology (CGT) program at Purdue University, Calumet, does not
include many programming courses at the freshman and sophomore levels. To better prepare
the students to meet industry requirements and to enhance their employability by sharpening
their programming skills, it is essential to teach introductory graphics programming course(s)
at the first/second year. The undergraduate computer graphics technology program at Purdue
University, Calumet, focuses on areas such as multimedia design, web design and
development, computer animation, game development and graphic design. Formerly, CGT
students would take programming courses (Java or C++) from other academic departments,
but these often would be too discipline-specific to meet the needs of the CGT students. To
resolve this issue, a CGT-specific computer graphics programming course was developed.
Since CGT students tend to be visually oriented and are exposed to various graphics design
and game development tools, it was beneficial to teach fundamental programming concepts
using simple 2-D game laboratory exercises. It was also believed that the 2-D casual game

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

laboratory exercises would serve the dual purpose of enhancing general programming
concepts and inculcating computer game development skills.

This paper proposes the use of casual 2-D game laboratory exercises to raise the students’
interest in introductory programming course. Four casual 2-D games—Pong, Tetris, Maze,
and Angry Birds—were chosen to reinforce the conditional statement, array, recursion, and
API programming concepts respectively. Visual programming exercises can quickly
communicate programming concepts, especially for students with visual learning style
preferences [20-22]. Overall, the results suggest that the visual and casual 2-D game
laboratory has helped students learn complex concepts. An open source programming
environment called Processing was chosen to design and implement laboratory exercises in
an introductory graphics programming course.

Methods

Some programming concepts are generic and span across different languages. These include
data, variables, scope, functions, loops, iteration, conditionals, recursion, etc. [llustrations can
quickly communicate programming concepts, especially for students with visual learning
style preferences [20-22]. Besides these basic programming elements, students need to know
a very important programming paradigm, object-oriented programming (OOP). Extremely
successful programming languages like Java and C++ are based on OOP. The casual game
laboratory exercises would focus on one or more fundamental programming concepts.

Development of Pong Game Laboratory Exercise

One of the fundamental programming concepts is conditional statement. Graphics examples
may help students to transcend the abstract level and take the learning process to a more
concrete level. This is because a visual example allows students to actually see the result of
conditional statement via the graphic output window. Pong is one of the first arcade games
created in 1970s. In this game, the “ball” will bounce back from the side walls until a player
scores a point. The logic behind the ball bouncing off the sidewalls is essentially a
conditional statement. If the vertical position of the “ball” is less than O (the upper boundary
of screen) or higher than the screen height (the lower boundary of screen), the ball will
change its speed along a vertical direction. Without the conditional statement, the ball will
disappear from the upper or the lower boundary of the screen. In this way, the students can
immediately interpret the result of conditional statement in a visual fashion. This logic of this
conditional statement is illustrated in Figure 1, left image. The similar logic of conditional
statements will be applied to the collision between the “ball” and the player paddle, as well as
the opponent’s paddle.

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

& Pong | Processing 15.1 = | B)
File Edit Sketch Teols Help

OO0 BEED

Pong +

if (b Srare)

{
ball.moveBall() ;
eneny.moveEneny (ball.¥) :

if{ player.checkCollision(ball.x, ball.y, ball.size x/2])

ball.speed x = -ball.speed x;
]

if{ enemy.checkCollision(ball.x, ball.y, ball.size x/2))
{
ball.speed_x = -hall.speed_x;

A —

Figure 1. Pong game laboratory exercise for conditional statement
Development of Tetris Game Laboratory Exercise

The concept of variable is the first bottleneck for freshman programing course. Simply stated,
a variable is a data-holder or a computer memory used to hold data. Just as in the real-world
different containers are used to hold different types of materials, different variables are used
to store different types of data. A more advanced data concept for an introductory
programming course is array. There are several issues when students start to use array data
structure. The first issue is array index out of bound, where the valid array index ranges from
0 to array size minus 1. The second issue is mapping a real-world problem to an array data
structure.

The first example we used to map real world problem to an array data structure is simple a
Tic-Tac-Toe game. In this demo example, we created a 3 x 3 integer array to represent a Tic-
Tac-Toe map. This example demonstrates that a traditional board game can be represented by
a simple array structure and illustrates the importance of separating the underlying data
structure (3 x 3 integer array) from the graphical displays. The Tic-Tac-Toe game requires the
students apply graphical drawing functions, mouse input functions, object-oriented design,
and array data structure to solve the problem. Below are several important tasks that student
need to complete:

e A class is designed to represent the Tic-Tac-Toe map. A data member of a 3 x 3 integer
array is to represent the map. Initially the array is initialized with a value of 0.

¢ In the main function, a 3 x 3 grid is drawn on the display screen. For each grid, it checks
the value of the Tic-Tac-Toe array. If the array element value is 0, nothing was drawn; if
itis 1, we draw a circle, and if it is -1, we draw an “X” symbol.

e If the player clicks on the display screen, the mouse click position will be mapped to the
array index, and the Tic-Tac-Toe array element value will be set to 1.

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

The computer will check the remaining array elements, choose the best place, and set the
array element value to -1.

Whenever a player or computer sets an array element value, an evaluation routine will
check the three consecutive values along horizontal, vertical, and diagonal directions to
determine the winner.

r‘ Puzzle i = e |

Figure 2. Tic-Tac-Toe game for array concept

A more advanced laboratory exercise is Tetris, a famous 2-D game that was developed by
two Russian programmers. After completing the simple Tic-Tac-Toe game, students are able
to map the Tetris game to array data structures. The display screen is mapped to a 10 x 20
integer array. The Tetris block is mapped to a 4-element integer array. The Tetris block is
moving inside a 10 x 20 map to see if the block touches the lower boundary of the map or any
block previously occupied the map grid. The rotation of the block is essentially changing the
4-element array value of Tetris block object. Below are several important tasks that student
need to complete:

A Tetris map class is designed to represent the display screen of the Tetris game. A data
member of 10 x 20 integer array is to represent the map. Initially, the array is initialized
with value of 0.

A Tetris block class is designed to represent the block of the Tetris game. A data member
of a4 x 2 integer array is to represent the shape of the Tetris block. The initial value of
the shape array is determined by the type of the block.

In the main function, a 10 x 20 grid is drawn on the display screen. For each grid, it
checks the value of the Tetris map array. If the array element value is 0, nothing was
drawn; if it is 1, a solid rectangle is drawn on the grid, location indicating a block has
occupied that grid.

At any time, there is an active block continuously moving down; if the player pressed a
left or right arrow key, the block move left or right. If the player pressed the up or down
key, the block rotates clockwise or counterclockwise to change the shape.

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

e After each movement of the block, the computer will check if the block touches the lower
boundary of the map or any block previously occupied the map grid. If a collision is
detected, the computer will check if a horizontal line is occupied by blocks. If so, that
grid line is removed from the map array.

¢ Next, a new block object is created and repeats the game play. And if the block occupied
the top grid line, the game ends.

HEEEEEEEEEEE
HEEEEEEEEEEE
HEEEEEEEEEEE
HEEEEEEEEEEE
HEEEEEEEEEEE
HEEEEEEEEEEE

Figure 3. Tetris game laboratory exercise for advanced array concept
Development of Maze Game Laboratory Exercise

One important concept in programming is recursion. Solving a Maze game requires the
knowledge of array data structure and recursive programming skills. In the Maze game
laboratory exercise, the maze is represented by two-dimensional integer array. A value of 1 in
the array element indicates the wall, and a value of 0 indicates the path. A recursive function

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

is created to find out one of the maze path from the entrance to the exit. The recursive
function works as follows:

e If the current location is the exit point, the recursive function returns with success, which
means we find the solution.

e [f the current location is not an exit point, we mark the current location as visited by using
value of 2; then we continue to look for the 4 neighboring array elements. If we find any
one neighboring array with a value of 0, we recursively call the solve maze function.

e If no valid path exists, we mark the current cell as a dead end, by using value of -1, and
return.

¢ Once the recursive function returns with success, the path from the entrance to the exit
will be displayed by marking all the array elements with value of 2.

i — —

Figure 4. Maze game laboratory exercise for recursion
Development of Angry Birds Game Laboratory Exercise

At the final project period of the introductory programming course, we decided to teach the
students how to use open source libraries to create a prototype Angry Birds game. We
decided to use Fisca library, a wrapped JBox2-D java library, for the processing. Both the
Angry Birds class and the Pig class extend the FCircle class of the Fisca library. The wood
blocks extend the FBox class. The actual shape of the angry bird, pigs, and wood blocks are
represented using images. The pigs and wood blocks were set as passive dynamic objects,

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

and angry bird object was set as active dynamic objects. In addition, the Angry Birds class
has methods to deal with the mouse input. Once the user selected the angry bird and dragged
to a shooting position, initial force and direction were calculated and applied to the bird. The
bird will fly to the wood blocks and pigs to interact with them.

Figure 5. Angry Birds game laboratory exercise for open source library
Results and Discussion

These 2-D game laboratory exercises were designed to cover essential programming concepts
as well as advanced topics such as array, recursion, and open source library. The
exams/quizzes and labs/projects were designed to evaluate the students’ learning outcomes.
Midterm and final exams consisted of 100 questions that tested student understanding of
graphics programming concepts. Table 1 illustrates the number of questions in each sub-
category and the students’ performance in the corresponding sub-category. The exam result
indicates that students performed extremely well in understanding 2-D graphics concepts.
The results also show that approximately 80% of the students correctly answered basic
programming questions. These questions covered concepts such as variable, conditional
statement, function, recursion, array, OOP, and event-driven programming. Overall, the
results suggest that the 2-D causal game laboratory exercises have helped students learn
complex concepts.

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

Table 1. Question distribution and student success rates in midterm/final exam

Midterm (50 Questions) and Final (50 Questions)
Number of Question Success Rate

Variable 10 79.6%
Conditional Statement 12 86.6%
Loop 6 89.2%
Array 9 78.9%
Functions 14 72.2%
Graphics Transformation 9 95.1%
Object Oriented Programming 14 84.5%
User Interaction(Keyboard/Mouse) 12 89.8%
Images/Text 5 76.7%

Processing Specific Functions 9 89.5 %
Total 100 83.9%

Two types of end-of-semester course evaluations were conducted: course learning outcomes
and instructor evaluation. The course learning outcomes are presented in Table 2. To further
confirm the positive results demonstrated in this section, the following question was included
in the final instructor evaluation: “I am glad that I took a graphics programming course in my
freshman year”: 50% of the students replied “Strongly Agree” and 50% selected “Agree.”
This confirms that students are receptive to the idea of learning CG concepts using a
programming medium.

Table 2. Question distribution and student success rates in midterm/final exam

Survey Question (1-Lowest, 5-Highest) Score

1. I learned basic programming concepts such as variables, data types, selection and repetition | 4.375
control structures, arrays, files, and methods and functions from this course.

2. After taking this course, I can create simple object-oriented applications. 4.19

3. After this course, I can understand the similarities between Processing and Java. 3.875

4. After this course, I can apply knowledge to different computer graphics software applications. | 4.3125

Conclusion

This paper proposed using a series of 2-D casual game laboratory exercises in first year
undergraduate programming courses. The study explored the feasibility of attracting students
to the programming laboratory tasks with 2-D game topics. With these exercises, students can
create their own simple games with fundamental programming concepts such as conditional
statements, array, recursion, and open source library. In this paper, a series of hands on
laboratory exercises were described, focusing on casual 2-D games to increase the students’
interest in an introductory computer graphics programming course. The Pong game
laboratory exercise was developed to teach the conditional statements and keyboard/mouse
interaction. The Tetris exercise was designed to reinforce the usage of array data structure

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

and boundary checking. A Maze game laboratory exercise was developed to convey the
knowledge of recursive programming. In addition, the Angry Birds exercise was designed to
teach programming using open source libraries. The paper addressed the issue of reducing
“cognitive overload” by minimizing perplexing jargon or complex programming terminology
and using graphics illustrations as an effective means to communicate programming notions.
With casual game laboratory exercises, students could actually see the visual result via the
graphic output window, which facilitated understanding important programming concepts.
Students had shown great interests in these casual game laboratory exercises and provided
positive feedback in the end-of-semester course evaluations.

References

[1] Kinnunen, P., & Malmi, L. (2006). Why Students Drop Out CS1 Course? Proceedings
of the 2006 International Workshop on Computing Education Research, 97-108.

[2] Lahtinen, E. Ala-Mutak, K., & Jarvinen, H. (2005). A Study of the Difficulties of
Novice Programmers. ACMSIGCSE Bulletin, 37(3), 14-18.

[3] Gomes, A., & Mendes, A.J. (2007) Learning to Program—Difficulties and Solutions.
Proceedings of the International Conference on Engineering Education, 283-287.

[4] Jenkins, T. (2002). On the Difficulty of Learning to Program. Proceedings of the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences, 53-38.

[5] Driscoll, M. P. (2005). Psychology of Learning for Instruction. (3rd ed.). Needham
Heights, MA: Allyn and Bacon.

[6] Keller, J. M., & Litchfield, B. C. (2002). Motivation and Performance. In R. A. Reiser
& J. V. Dempsey (Eds.), Trends and Issues in Instructional Design and Technology
(pp- 83-98). Upper Saddle River, NJ: Pearson Education.

[7] Talton, J. O., & Fitzpatrick, D. (2007). Teaching Graphics with the Opengl Shading
Language. ACM SIGCSE Bulletin, 39(1), 259-263. doi: 10.114.

[8] Prince, M. J., & Felder, R. M. (2006). Inductive Teaching and Learning Methods:
Definitions, Comparisons, and Research Bases. Journal of Engineering Education,
95(2), 123-138.

[9] Jonassen, D. H. (2002). Integration of Problem Solving into Instructional Design. In R.
A. Reiser & J. V. Dempsey (Eds.), Trends and Issues in Instructional Design and
Technology (107-120). Upper Saddle River, NJ: Pearson Education.

[10] Newby, T.J., Stepich, D. A., Lehman, J. D., Russell, J. D., & Leftwich, A. T. (2010).
Educational Technology for Teaching and Learning. (4th ed.). Upper Saddle River, NJ:
Pearson Education.

[11] Hadim, H. A., & Esche, S. K. (2002). Enhancing the Engineering Curriculum through
Project-Based Learning. Proceedings of the 32nd ASEE/IEEE Frontiers in Education
Conference, Boston.

[12] Mills, J. E., & Treagust, D. F. (2003). Engineering Education—Is Problem-Based or
Project-Based Learning the Answer? Australasian Journal of Engineering Education,
2-16. Retrieved from http://www.aaee.com.au/journal/2003/mills_treagust03.pdf

[13] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,
& Paterson, J. (2007). A Survey of Literature on the Teaching on Introductory

Programming. ACM SIGCSE Bulletin, 39(4), 204-223. doi: 10.1145/1345375.1345441.
Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

[14] Jonassen, D. H., Howland, J, Moore, J., & Marra, R. M. (2003). Learning to Solve
Problems with Technology: A Constructivist Perspective. (2nd ed.). Upper Saddle
River, NJ: Pearson Education.

[15] Roblyer, M. D. (2004). Integrating Educational Technology into Teaching. (3rd ed.).
Upper Saddle River, NJ: Pearson Education.

[16] Hernandez, C. C., Silva, L., Segura, R. A., Schimiguel, J., Paradela Led6n, M. F.,
Bezerra, L. M., & Silveira, L. F. (2010). Teaching Programming Principles through a
Game Engine. Clei Electronic Journal, 13(2), 3.

[17] Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning
Programming at the Computational Thinking Level via Digital Game Play. Procedia
Computer Science, 9, 522-531.

[18] Papastergiou, M. (2009). Digital Game-Based Learning in High School Computer
Science Education: Impact on Educational Effectiveness and Student Motivation.
Computers & Education, 52, 1-12.

[19] Holzinger, A., Kickmeier-Rust, M., & Albert, D. (2008). Dynamic Media in Computer
Science Education; Content Complexity and Learning Performance: Is Less More?
Educational Technology & Society, 11(1), 279-290.

[20] Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning Styles and
Performance in the Introductory Programming Sequence. ACMSIGCSE Bulletin, 34(1),
33-37.

[21] Lewalter, D. (2003). Cognitive Strategies for Learning from Static and Dynamic
Visuals. Learning and Instruction, 13, 177-189.

[22] Zuwalkernan, I. A., Allert, J., & Qadah, G. Z. (2006). Learning Styles of Computer
Programming Students: A Middle Eastern and American Comparison. IEEE
Transactions on Education, 49(4), 443-450.

Biographies

GE JIN, D.Sc, is currently an assistant professor in the Department of Computer Information
Technology and Graphics at the Purdue University Calumet. He teaches computer game
development, computer graphics, and animation, as well as computer information technology
courses at the undergraduate and graduate levels. Prior to joining Purdue University,
Calumet, he was a postdoctoral research scientist at the GeorgeWashington University,
Department of Computer Science. Professor Jin holds a B.S. in Computer Science from
Peking University, China, and an M.S. in Computer Science from Seoul National University,
South Korea. He earned his Doctor of Science degree in Computer Science with a
concentration in computer graphics from the George Washington University. His research
spans the fields of computer graphics, virtual reality, computer animation, medical
visualization, and educational game development. He is a member of the ACM SIGGRAPH,
ASEE, and International Society of Virtual Rehabilitation.

MAGESH CHANDRAMOULLI, Ph.D, is an assistant professor of Computer Information

Technology and Graphics at the Purdue University, Calumet. He earned his B.E. degree from
Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

the College of Engineering, Anna University, India, and an M.Eng from the National
University of Singapore. He earned his Master of Science from the University of Calgary,
Canada, and Ph.D. from Purdue University. His research interests include computer graphics,
3-D visualization, multi-objective optimization, genetic algorithms, virtual reality, and
computer animation. Dr. Chandramouli may be reached at mchandr@purduecal.edu.

Proceedings of The 2014 IAJC-ISAM International Conference
ISBN 978-1-60643-379-9

